
School of Computing

Teesside University

Middlesbrough TS1 3BA

Assessing WebSocket Protocol Performance for Real-

Time Cryptocurrency Algorithmic Trading with Compiled,

Intermediate and Interpreted Programming Languages

in Cloud Environment

An academic research paper for possible submission to

Computers Journal (ISSN 2073-431X)

Submitted in partial requirements for the degree of MSc in Computing

Date: 24.8.2020

Martin Papík (18276455/1)

Supervisor: Ing. Bohuš Získal, Ph.D. Wordcount: 8884

Computers 2020, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/computers

Article

Assessing WebSocket Protocol Performance for Real-

Time Cryptocurrency Algorithmic Trading with

Compiled, Intermediate and Interpreted

Programming Languages in Cloud Environment

Martin Papík

School of Computing, Teesside University, Middlesbrough TS1 3BA, United Kingdom; V8276455@tees.ac.uk

Received: date; Accepted: date; Published: date

Abstract: The most of cryptocurrency exchanges provide their market data via WebSocket API.

Therefore, trading systems are recommended to utilize WebSocket protocol to be able to connect to

the exchange and receive the data. Various programming languages and their respective libraries

which contain the referential RFC 6455 implementation of WebSocket protocol can be used for

development of communication interface within the trading system. Our study focuses on their

evaluation in order to determine their performance differences which are determinative for

communication speed that is an important criterion for profitable trading system. Six connectors

were developed in compiled, intermediate and interpreted programming languages and their

respective WebSocket libraries and deployed in the cloud. The WebSocket layer performance of

each connector represented by the event latency metric was tested with three cryptocurrency

exchanges producing high workloads on their WebSocket API data streams. In this experiment

WebSocket protocol implementation in C++ and Go, both of which belong to the group of compiled

languages, have been evaluated as the best performing implementations. Node.js runtime which

produces in-memory bytecode from JavaScript source which is considered as a representative of

interpreted languages, placed second right behind C++, and that proves the high performance of

Google’s V8 engine. Python and PHP were measured approximately to have the same performance,

slightly worse compared to Go. Java took the last place from the sample of tested languages. This

observation implies compiled languages and JavaScript in combination with Node.js runtime

together with their WebSocket libraries should be preferred for building communication interfaces

within cryptocurrency trading systems.

Keywords: WebSocket protocol; programming language; programming language library;

performance test; cryptocurrency exchange; algorithmic trading system; cloud

1. Introduction

In the last decade cryptocurrencies have experienced broad market acceptance and fast

development [1]. The innovative and revolutionary concept of digital currency enabled the evolution

of cryptocurrency exchanges, where buying and selling of cryptocurrencies is primarily concentrated.

These exchanges are purely digital and do not have shutdown periods. This provides serious profit

opportunities for wide spectrum of financial traders who take advantage of algorithmic trading [2].

Moreover, the attention of traders is drawn even more by the extreme volatility of the cryptocurrency

market. The days when Bitcoin touched $20.000 and then went back to $7.000 – $8.000 are not so far

away [3]. Furthermore, this is also confirmed by the overall growth of the cryptocurrency market

capitalization from $18 billion in January 2017 to $599 billion in January 2018 [4].

Computers 2020, 9, x FOR PEER REVIEW 2 of 25

Cryptocurrency trading and related technologies is still highly emerging market. The research

in this field have seen considerable progress and notable upturn in interest and activity – more than

85% of related research papers have appeared since 2018 [5].

Technological advancements in the form of supercomputers, multi-core processors, GPUs,

FPGAs, high performance networks and fiber optics together with services like colocation of trading

servers, raw data feeds or direct exchange API access are contributing to reduction of competitive

advantage differences across traders [6–8]. However, speed in the sense of being faster than other

traders, is still one of key factors for cryptocurrency traders, as it is for traditional stock traders,

because it creates profit opportunities by enabling a prompt response to market activity [9].

There are several sophisticated commercial and open-source cryptocurrency trading

infrastructure systems, platforms and libraries aimed for analyzing, generating, routing and

executing orders (3commas, Apex Trader, AutoView, Autonio, BitUniverse, BlackBird, BTC Robot,

Cap.Club, Capfolio, Catalyst, CCXT, Coinigy, Coinrule, CryptoHopper, CryptoSignal, CryptoTrader,

Ctubio, Freqtrade, Gekko, GoLang Crypto Trading Bot, GunBot, HaasOnline, HodlBot, Kryll,

Leonardo, Live Trader, Pionex, ProfitTrailer, Quadency, Shrimpy, Signal, StockSharp, TradeSanta,

ZenBot, Zignaly etc.) and there are also many others like real-time, turtle or arbitrage systems

developed for utilizing very specific algorithms that execute suitable trading strategies or run under

specific market conditions [5]. Each of these systems has been developed in different programming

language varying mainly between C++, C#, Go, JavaScript, PHP and Python. Based on several

researches where authors discuss determination of use and measure performance and quality aspects

of widely used programming languages, including those which were used for development of

mentioned trading systems, it is highly probable that results of trade execution in the real world

would vary for each of them [10–13].

Each of the mentioned systems implements software component which is intended for

communication with cryptocurrency exchange in order to receive market data that is mostly

provided via API utilizing WebSocket protocol. Despite there are some studies which focus on

WebSocket protocol performance measurements [14–21], there are very few studies which focus on

measuring WebSocket performance in context of programming languages [22, 23].

Imre and Mezei proposed a design of WebSocket benchmark infrastructure created for

measuring server-side performance of the WebSocket protocol. The study also validated presented

infrastructure design with three measurement scenarios using industrially applied WebSocket

implementation. Go programming language with Gorilla package was used on the server side. They

also tried several other implementations like Node.js and Socket.io for JavaScript, C++ using

WebSocket++ and Erlang with Cowboy framework with the final result that C++ and Go have the

highest performance. At client side they used Node.js with ws library [22]. No other programming

languages or their respective libraries were used on client side in order to provide their performance

measurements.

Wang measured and evaluated performance of five Java WebSocket frameworks (Netty,

Undertow, Vert.x, Grizzly and Jetty) from aspects of concurrency, flow, connection type and resource

occupancy. The experiment proved that Netty and Underflow perform better in highly concurrent

environments, while Grizzly is suitable for large flow conditions. The results also showed that with

persistent connection, Netty far outperformed other frameworks and Vert.x and Underflow can

handle most requests within relatively shorter time. Besides, Netty and Vert.x occupy less CPU and

memory resources in comparison with other frameworks [23].

We have not found any study which focuses solely on establishing communication and receiving

events from cryptocurrency exchanges at different workloads and argues the suitability of use of

different implementations of WebSocket protocol in trading systems. Performance optimization of a

component covering such process may undoubtedly help with reducing the time what is needed for

receiving events from exchanges and logically also reducing the overall time needed for trading

strategy execution. In the algorithmic trading environment, where each millisecond and even

microsecond in communication latency with the exchange is crucial for the trade execution [3, 7, 9,

24–26], the deeper examination of WebSocket protocol performance is expected to lead to significant

Computers 2020, 9, x FOR PEER REVIEW 3 of 25

findings useful for cryptocurrency trading systems development decisions. These decisions are

important for companies, communities or individuals who endeavor to build the most profitable

trading systems.

The integral part of our project was the development and subsequent performance testing of

WebSocket connector – a software component responsible for subscription to cryptocurrency

exchange API and for receiving market events. The WebSocket connector was developed with six

programming languages utilizing the libraries with reference implementation of WebSocket protocol

for each language. Each connector was placed on separate virtual server within chosen cloud

provider. All server configuration parameters in terms of hardware and operating system were

identical while servers were placed in the same network segment and datacenter location.

Measurements of WebSocket protocol implementations for each programming language with

the performance test is the subject of experimental part of this project. One of the goals of the test was

to generate high workloads so that each instance of WebSocket connector developed with particular

programming language was receiving as many events from three WebSocket API data streams of

selected cryptocurrency exchanges as possible. Further analysis and correlation of data obtained from

the performance test helped us to answer the main research question: Does implementation of

WebSocket protocol within compiled, intermediate and interpreted programming languages cause

significant latency differences in receiving of events which are persistently streamed by

cryptocurrency exchanges under various workloads?

We verified performance differences of interpreted, intermediate and compiled programming

languages within our research. We confirmed conclusions of previous programming languages

research pointing to the fact that languages like C++ or Go, which compile their source code directly

into machine code, outperform intermediate and interpreted languages [13, 27] with regards to

utilized WebSocket protocol libraries. Another important finding is that Node.js runtime used for

execution of JavaScript WebSocket connector took second place just between two compiled languages

– C++ and Go. It confirms the incredible performance of V8 which is Google’s open source high-

performance JavaScript and WebAssembly engine the Node.js runtime is built upon. Python slightly

outperformed PHP and took the fourth place. The curiosity is that Java placed last. It was not

expected because Java uses JIT (Just-In-Time) compilation and optimization mechanisms. We suspect

that Java WebSockets library might not be optimized for workloads which were chosen for this test.

This finding will require further investigation.

The selection of particular programming language and its library should be determinative in

context of its further use for the composition of module which is responsible for communication with

cryptocurrency exchange API within the algorithmic trading system.

The rest of the paper is organized as follows. In Section 2 we focus on research methodology of

WebSocket protocol and the design of system components employed in performance tests including

important development decisions for the main component – WebSocket connector. The high-level

system design proposed in this chapter is essential for understating of how the connector

communicates with exchanges and what type of data is received within the experimental testing

phase. The section ends with the description of performance test procedure. The test summary, data

cleaning procedure, data evaluation methodology and explanation of results obtained within the

performance test are described in Section 3. Section 4 discusses the research results in broader

context with regard to previous research and outlines possible future developments.

2. Materials and Methods

In this section, we propose the system architecture used for performance testing of WebSocket

protocol implementation in chosen programming languages. Further, we introduce the experiment

environment composed of cloud virtual servers, WebSocket connectors and related utilities, and

cryptocurrency exchanges. The chapter ends with a description of test methodology.

Computers 2020, 9, x FOR PEER REVIEW 4 of 25

2.1. System Architecture

The system is primarily designed to cover needs for experimental performance testing of

WebSocket protocol in various programming languages. The system is built according to the well-

known distributed structure of client-server model. Generally, the system architecture is composed

of component types that are commonly used in the IT industry (Linux demons, databases, cloud

servers and Internet services) and component types that were developed by authors of this research

for the purpose of performance testing and analysis of WebSocket protocol within selected

programming languages (WebSocket connector, test manager and data analyzer). Integration of

mentioned components is based on the best practices and usual setup of trading systems

communication interfaces. Detailed justification of the use of individual components is included in

Chapter 2.2.

WebSocket connector plays a role of the client, it is placed in virtual server in cloud environment

and used to handle events received from cryptocurrency exchanges. Cryptocurrency exchanges are

considered servers within the client-server model. They are black-boxes which send events to the

client according to the initial instrumentation received from the client. Client and server

communicate together over WebSocket protocol in the Internet. The overall system architecture is

shown in Figure 1.

Figure 1. WebSocket connector system component architecture.

2.2. WebSocket Connector

The WebSocket connector is a CLI application and provides three main functions: it subscribes

to a specific WebSocket API data stream of particular cryptocurrency exchange, measures arrival time

of each received event and saves the event together with the detected timestamp to the SQLite

database. High-level description of algorithm of the connector is shown in Figure 2.

Connector instruments exchange’s WebSocket API and tries to create a connection with

requested data stream by sending the opening handshake packet containing path value along with

the GET request method and at least HTTP(S) 1.1 protocol version specification as a part of the header

[28]. Once the exchange API server accepts the request, persistent connection between connector and

exchange’s WebSocket API data stream is created. As long as the WebSocket connection is open,

connector listens for various event types – open, message, error and close – defined within RFC 6455

WebSocket protocol standard. Our WebSocket connector was developed to be able to subscribe to

those data stream types which prescribe opening a connection via header that is a part of the

handshake packet. The connection with cryptocurrency exchanges which require opening a

connection with their data streams via additional message is not supported.

Connector assigns standardized Internet timestamp in milliseconds in UNIX Epoch time format

to each event exactly in the moment when the event is received. NTP daemon is configured on all

Computers 2020, 9, x FOR PEER REVIEW 5 of 25

WebSocket connector test servers and test management server. It uses public network time

distribution service provided by ntppool.org to guarantee the measurement of undistorted time [29].

INPUT: set of three strings: exchange_id, exchange_api_domain, exchange_api_stream and one integer: exchange_api_port

OUTPUT: database file with unknown number of string – integer pairs: exchange_event and system_timestamp

if count of input_arguments is strictly less than 4 # Verify number of input arguments

exit # Number of arguments is strictly less than 4 - exit

create websocket_api_connection # Create WebSocket API connection

if websocket_api_connection does not exist # Verify existence of WebSocket API connection

exit # WebSocket API connection not created - exit

else # WebSocket API connection created

try # Try to execute following block of statements

create database_file # Create database file

 create database_tables_schema # Create database tables schema

 insert test_details to database # Insert test details into database

 while true # Execute until the connection is active

 receive event # Receive event from WebSocket API

 get system_timestamp # Get timestamp from operating system

 insert event and system_timestamp into database # Insert event and timestamp into database

 if exit_file exists # Verify existence of exit file

 exit # Exit file exists - exit

catch exception # Catch exception thrown in try block

 exit # Exception caught in try block - exit

Figure 2. Pseudocode of WebSocket connector.

At the beginning of each test, connector creates the SQLite file database with two tables in it.

Structure of the database is shown in Figure 3. One table contains metadata with details relevant to

the particular test. The second table contains automatically incremented ID for each received event,

timestamp indicating when the event was received and the raw event itself. We decided to use SQLite

database because of its lightweight file-based nature, its ease of implementation and its sufficient

performance. SQLite is able to do 50.000 or more insert statements within one second on average

desktop computer [30]. The other study shows it took only 0.12 seconds to insert 10.984 rows to it

[31].

-- Adminer 4.2.4 SQLite 3 dump

DROP TABLE IF EXISTS "events";

CREATE TABLE "events" (

"event_id" integer NOT NULL PRIMARY KEY AUTOINCREMENT,

"datetime_received" text NOT NULL,

"event" text NOT NULL

);

DROP TABLE IF EXISTS "test_details";

CREATE TABLE "test_details" (

"test_id" integer NOT NULL PRIMARY KEY AUTOINCREMENT,

"vps_id" text NOT NULL,

"connector_id" text NOT NULL,

"exchange_id" text NOT NULL,

"stream_id" text NOT NULL,

"stream_args" text NOT NULL,

"datetime_start" text NOT NULL

);

Figure 3. SQLite database structure.

For the purpose of performance test, connector was started in Linux screen. Linux screen utility

multiplexes physical terminal between several processes, typically interactive shells. It allows the

program to be executed in the independent VT100 virtual terminal window that can be detached

from user’s physical terminal while the program is still running [32]. It means that user may

disconnect from the server for the duration of the test without interrupting the execution of

WebSocket connector.

Computers 2020, 9, x FOR PEER REVIEW 6 of 25

The essential criterion for the realization of the experiment was the choice of the programming

languages and their respective libraries the WebSocket connector would be developed with. There

are several studies which discuss the choice of programming languages for algorithmic traders with

the usual result compiled languages have better performance compared to intermediate or

interpreted languages. Python were measured as much as 852.462 seconds average relative running

time for all measured factors compared to average relative time 1.0 for C++ with the implementation

of trading algorithm based on number of econometric and statistical tests [13]. The other study which

compares programming languages in economics upon solving the stochastic neoclassical growth

model shows Java is 2.10 and 2.69 times slower than C++ while PyPy implementation of Python is 44-

45 times slower and traditional implementation of Python is 155-269 times slower compared to C++

[27].

To not choose the language based only on performance assumptions we also considered latest

professional report from RedMonk analyst company which compares programming languages

according to their popularity rank on StackOverflow and GitHub for Q1 2020 [33]. Popularity index

for our programming language selection is as follows: C++ 6th (1st compiled), Go 15th, Java 2nd (1st

intermediate), JavaScript 1st (1st interpreted), PHP 4th and Python 2nd (shared place). The popularity

of programming languages in this report well corresponds with the popularity of programming

languages shown in recent research studies relevant to high performance applications [34, 35]. Our

choice of programming languages and their respective WebSocket libraries which were used for the

WebSocket connector development is presented in Table 1. The table also includes the version of

compiler or interpreter used within the project.

Table 1. Programming languages and libraries used for WebSocket connector development.

Programming

Language

(Version)

Programming

Language

Implementation

Compiler /

Interpreter

(Version)

WebSocket Protocol

Library

(Version)

C++ (17) Compiled g++/gcc (8.4.0) µWebSockets (18.10.0)

Go (1.10.4) Compiled go (1.10.4) Gorilla WebSocket (1.4.2)

Java (JDK 11.0.8) Intermediate javac (11.0.8) Java WebSockets (1.5.1)

JavaScript (ES10) Interpreted Node.js (10.22.0) ws (7.3.1)

PHP (7.2.24) Interpreted Zend (3.2.0) php-wss (1.6.1)

Python (3.6.9) Intermediate CPython (3.6) websockets (8.1)

For the objectiveness of our test we decided to develop WebSocket connector in balanced sample

of representatives of compiled, intermediate and interpreted languages. Compiler is a translator that

generates machine code from source code. We call compiled languages as those whose final output

is executable (e.g. PE, ELF etc.) in native machine code format. C++ and Go belong to this group.

Nowadays, there are not many implementations of purely interpreted languages. Interpreter is step-

by-step executor of source code where no pre-runtime translation takes place. Almost all known and

widely used implementations of programming languages that are not directly compiled into machine

code employ some sort of compilation of source code into bytecode and use the virtual runtime

environment for its execution. We call these languages intermediate. There are several differences in

source code interpretation/compilation process between languages which belong to this group. We

call interpreted languages those whose source code is interpreted/compiled into bytecode and then

into machine code on-the-fly, directly in memory, while the interpreter is being executed. JavaScript

and PHP belong to this group. Java source code within our implementation is converted into

bytecode in form of Java class files. They are then physically stored in jar bundle on file system and

executed via JVM (Java Virtual Machine). Java is considered intermediate programming language.

Finally, Python is also included into intermediate group. Python pre-compiles the source code into

bytecode and stores it in its so-called .pyc files. There are two possibilities how to run the program.

It is either executed with Python interpreter and immediately re-compiled into physical .pyc file

Computers 2020, 9, x FOR PEER REVIEW 7 of 25

which is then running within PVM (Python Virtual Machine) or the .pyc file generated from previous

compilation is executed directly without re-compilation.

We intentionally did not provide any performance optimizations for interpreters or compilers

where possible (e.g. -O flags for gcc/g++) because we were interested in running our performance test

with WebSocket connectors compiled or interpreted with default programming language settings.

Connectors were developed with chosen programming languages and their respective

WebSocket libraries. During the development process we configured the OS (operating system) and

programming language environment with necessary dependencies unique for each connector. We

downloaded last version of µWebSockets library from GitHub for C++ connector [36]. Once the

source code was prepared it was compiled with following g++ compiler parameters -std=c++17 -luWS

-lssl -lcrypto -lz -lsqlite3 -lvsqlitepp -lboost_system -lstdc++fs. A separate binary application was

created. Similarly, for Go connector, we downloaded Gorilla WebSocket library from GitHub and

compiled the source code to a standalone binary application [37]. Java connector required source of

Java WebSockets library, SLF4J logger and SQLite libraries [38]. We compiled the source code for

mentioned libraries to jar files. Once we developed the Java connector, we compiled its source code

with mentioned jar files to a Java connector class, included the class file into the build directory with

other mentioned libraries and prepared final jar application. Java WebSocket connector application

requires Java runtime for its execution. JavaScript connector was developed with ws library

downloaded via npm package manager and with the standard libraries provided by Node.js [39].

JavaScript Websocket connector source code requires the Node.js framework for its execution. Last

version of php-wss library was downloaded from GitHub via Composer, which is a dependency

package manager for PHP [40]. PHP WebSocket connector source can be executed with PHP

interpreter. Finally, websockets library for Python was downloaded via pip3 package installer [41].

Python WebSocket connector source code can be executed with the use of Python3 runtime.

In general, WebSocket connector is executed as a CLI application. Based on its programming

language implementation type, it either requires the path to interpreter or runtime at the first place,

or it runs as the compiled binary application. The application itself requires four parameters:

exchange id which identifies the test type which is saved as the part of metadata into test_details

table in SQLite database created at the beginning of each test. The other three important parameters

stand for the configuration of connection to the WebSocket API data stream: exchange WebSocket

API domain, exchange WebSocket API port and exchange WebSocket API stream.

2.3. Cloud Environment

For the test purposes all WebSocket connectors were deployed on virtual private servers in cloud

environment. There are three leaders in regard of cloud computing services: Amazon (AWS),

Microsoft (Azure) and Google (GCE) while Amazon is considered as the market leader according to

the latest Gartner report [42]. Coinbase cryptocurrency exchange, one of many financial services is

also hosted on Amazon’s cloud infrastructure what confirms reliability of their infrastructure [43].

AWS provides sufficient amount of virtual server types with regards to their performance and also

sufficient amount of geographical location options where the server might be deployed.

After the research of Amazon’s EC2 VPS instance options, we decided to eliminate possible

cloud’s hardware and network bottlenecks with the choice of m5d.xlarge VPS type for WebSocket

connectors [44]. We used the same instance type for management test server, which was

automatically checking the state of each WebSocket connector in chosen period and eventually

started those connectors which were disconnected from the exchange API. M5d.xlarge instance uses

second generation of Intel Xeon Platinum 8000 Series Processor with all core Turbo CPU clock speed

of 3.1 GHz and runs Linux Ubuntu 18.04 LTS (64-bit x86) operating system. Its parameters are shown

in Table 2.

AWS Management Console allowed us to manage VPS instances according to our needs, e.g.

rebooting, adding new storage, creating volumes, checking system status and performance

monitoring (CPU utilization [%], disk reads/writes [B], network packets in/out [B]).

Computers 2020, 9, x FOR PEER REVIEW 8 of 25

Table 2. Amazon AWS EC2 VPS instance parameters.

Model vCPU
Memory

(GiB)

Instance

Storage

(GiB)

Network

Bandwidth

(Gbps)

EBS

Bandwidth

(Mbps)

m5d.xlarge 4 16 150 NVMe SSD Up to 10 Up to 4,750

There are studies which observed positive linear correlation between distance of datacenters and

response times [45]. Therefore, institutional algorithmic traders use colocation services and place

their automated trading applications as close as possible within the exchange’s datacenter [46, 47].

However, geographical location plays a major role for reducing latency of algorithmic trades in our

case we have chosen Frankfurt as a cloud location for placement of our WebSocket connectors and

realization of the performance test. For our experiment the location was not important. The distance

between the exchange API servers and WebSocket connectors probably caused increased latency in

receiving events from exchanges. We assume it proportionally affected all WebSocket connectors

which were running parallelly in the same network segment created in Frankfurt datacenter location.

Comparison of absolute latency time values was not relevant to us. We tended to measure relative

latency differences in receiving events from the identical WebSocket API data streams of selected

exchanges across all WebSocket connector implementations.

2.4. Cryptocurrency Exchanges

The most of established cryptocurrency exchanges provide their data via WebSocket API which

work on notification principle. Trading application subscribes to WebSocket API and gets updates of

cryptocurrency prices anytime there is an update which may happen every second or even much

faster. This approach is more efficient and faster compared to REST API where a lot of GET calls must

be performed in order to receive data updates.

In our case cryptocurrency exchange was a black-box we did not have control over in terms of

performance. We only instrumented exchange’s WebSocket API to receive required type of data.

There are more than 300 cryptocurrency exchanges operating worldwide as of writing this article

[48]. Before we determined quantitative criteria for selection of exchanges used within out test, we

picked only centralized ones and those which implement Ticker, Candlesticks/OHLCV, Order Book

and Trades streams, which we consider these were able to generate as much load as possible within

one connection. The other two important technical requirements were that the cryptocurrency

exchange had to support WebSocket Secure protocol (WSS) and subscription to its WebSocket API

data stream via handshake packet header assembly.

We used following quantitative criteria for the exchange selection. Rating assigned by

TokenInsight analyst company while one of the criteria was that the overall mark must not be worse

than B. B mark means good risk control ability, possibility of a few abnormal risk and regular user

ecological operation. BB and A marks stand for even more stable exchange systems [49]. The next

selection criterion was that the exchange had at least 1 billion USD reported trading volume in the

last 30 days (data reviewed 26.7.2020) what can be used for the assumption of sufficient event flow

pushed to the WebSocket connector [50]. The legitimacy of reported cryptocurrency exchange trading

volume is the last important criterion while the exchange had to have the minimum total score of 3

(score 5 means most accurate reported trading volume, 1 means inaccurate reported trading volume)

[51]. Table 3 also includes number of markets which is not recognized as an exchange selection

criterion but it directly determines the theoretical number of data streams (and markets combinations

within one stream) the WebSocket connector is able to subscribe to.

For our test we decided to use three cryptocurrency exchanges which provide their data through

WebSocket API for our WebSocket connector. We used those which differ in trading volume and

number of markets as much as possible. That was meant to be able to derive general results of

WebSocket protocol performance in chosen programming languages without possibility of arguing

that results gained for various WebSocket protocol libraries using exactly one exchange would

Computers 2020, 9, x FOR PEER REVIEW 9 of 25

eventually completely differ for another exchange. Final sample of exchanges is composed of

Binance, Bithumb and Gemini [52–54].

Table 3. Cryptocurrency exchanges used for receiving data via their WebSocket API.

Cryptocurrency

Exchange

TokenInsight

Rating

Trading Volume

(USD/30 days)

Trading Volume

Legitimacy Score

Number of

Markets

Binance A 85.64B 5 653

Bithumb B 9.31B 3.5 105

Gemini BB 1.02B 5 27

 After choosing out exchanges, we tested instrumentation settings for their WebSocket APIs. For

each exchange we downloaded the list of supported symbols via REST API and transformed it into

WebSocket API query for a particular data stream. We tested combinations of data streams (e.g.

Ticker, Candlesticks/OHLCV, Order Book and Trades etc.) for chosen exchanges and we selected

those from which we received maximum amount of data to be able to utilize the exchange up to its

limits within one connection. In case two or more streams gave as similar amount of data, we

preferred the one with real-time update speed over those with 100ms or 1000ms update speed. Table

4 shows the specification of data streams to which each of six WebSocket connectors was connected

to for the duration of the performance test.

Table 4. Specification of cryptocurrency exchange WebSocket API data stream types.

Cryptocurrency

Exchange

WebSocket API

Endpoint

WebSocket Data

Stream Type

Data Stream

Update Speed

Binance stream.binance.com TRADE Real-time

Bithumb global-api.bithumb.pro ORDERBOOK Real-time

Gemini api.gemini.com MARKETDATA Real-time

 Figure 4 shows example of event payloads received from cryptocurrency exchanges involved

in WebSocket protocol performance test. These events (the event type of message) were pushed by

WebSocket APIs to connectors most frequently. The other types of events (open, error and close) were

also present in the test but their count was insignificant.

Figure 4. Example of event payloads received from WebSocket API data streams in JSON format: (a)

Binance Trade event; (b) Bithumb Order Book event; (c) Gemini Market Data event.

2.5. Test Methodology

There are several studies which examine performance of WebSocket protocol. They are

primarily focused on measuring concurrency number, data flow, connections and resource

occupancy in laboratory environment where the server and client are built for this purpose. One

{
 "stream":"btcusdt@trade",
 "data":{
 "e":"trade",
 "E":1596319805218,
 "s":"BTCUSDT",
 "t":370684729,
 "p":"11752.19000000",
 "q":"0.00000500",
 "b":2813775880,
 "a":2813775919,
 "T":1596319805217,
 "m":true,
 "M":true
 }
}

{
 "code":"00007",
 "data":{
 "b":[
 [
 "377.7600000000",
 "12.187121"
]
],
 "s":[

],
 "symbol":"ETH-USDT",
 "ver":"47562247"
 },
 "topic":"ORDERBOOK",
 "timestamp":1596319806676
}

{
 "type":"update",
 "eventId":12369938581,
 "timestamp":1596319806,
 "timestampms":1596319806063,
 "socket_sequence":1,
 "events":[
 {
 "type":"change",
 "side":"bid",
 "price":"11678.70",
 "remaining":"2.85587997",
 "delta":"2.85587997",
 "reason":"place"
 }
]
}

(a) (b) (c)

Computers 2020, 9, x FOR PEER REVIEW 10 of 25

study considers 100kB as a large event in size for flow test which is relevant to us, while differences

in performance of various Java frameworks were measured for events ranging from 1kB to 100kB in

their sizes [23]. This study did not consider differences of various programming languages and did

not discuss duration of test performed. There is also a paper which focuses on measuring data

transmission performance of files of different image formats using WebSocket protocol running the

test for 20 seconds only in laboratory environment [21].

We aimed to push the border of not only mentioned studies especially for flow test with

measuring performance of WebSocket protocol implementations in different programming

languages in real-world conditions connected to cryptocurrency exchange APIs for extended period

of time. The sufficient performance test time is generally considered one or two days [55], while we

decided to run the test for 100 hours (more than 4 days). We started our test on August 1st 2020 at

0:00 CET and stopped it on August 4th 2020 at 4:00 CET. Scenario parameters are shown in Table 5.

Table 5. Performance test scenario parameters.

Scenario ID
Cryptocurrency

Exchange

WebSocket Data

Stream Type

Markets

Count

Workload Duration

(hrs.)

1

Binance TRADE 628 High 100

Bithumb ORDERBOOK 157 High 100

Gemini MARKETDATA 1 High 100

To get the sufficient amount of data for our further analysis of events latency we connected each

of our six connectors (written in C++, Go, Java, JavaScript, PHP and Python) to three chosen

cryptocurrency exchange WebSocket APIs (Binance, Bithumb and Gemini) while the exchanges were

instrumented to send the maximum amount of real-time data from their data streams to connectors.

Each connector resided on one virtual server. General infrastructure scheme for performance test is

presented in Figure 5.

To achieve accurate and effective results, we followed one-factor-at-a-time experiment principle

for our test scenario [56]. We explicitly focused on measuring the event latency which represents the

time it took the event sent by the cryptocurrency exchange to come to and be received by the

WebSocket connector.

Figure 5. Performance test infrastructure scheme.

Computers 2020, 9, x FOR PEER REVIEW 11 of 25

 Virtual servers were placed in private network segment 172.31.0.0/16 in Frankfurt eu-central-1c

location in Amazon AWS cloud. Each server was assigned its own public IP address. Hardware and

OS layer configuration were identical for all servers (detailed information is described in Chapter

2.3). WebSocket connector application dependencies were installed and configured separately for

each programming language implementation. We generated one SSH key pair for all servers so that

we were able to manage them comfortably from either management server for the test purpose or

from our local computer residing in Prague. Based on the fact that servers were placed in one private

network segment, they were all interconnected.

 The next step was the installation and configuration of NTP daemon to preserve identical time

on all servers. Four servers provided by the NTP Pool Project network time distribution service – [0-

3].pool.ntp.org – were used to synchronize the local time on test servers.

 WebSocket connectors were intensively tested to verify that they work properly with no runtime

errors and that they are ready for the test.

 The last activity before starting the test was creating two shell scripts (management and exit

script) and configuring cron daemon. First script was aimed to start and manage the WebSocket

connectors automatically during the test and the second to stop all WebSocket connectors at the end

of the test. First script was created in a way that it instruments each connector to connect to Binance,

Bithumb or Gemini exchange. The connector startup procedure was as follows. The management

script running on management server started the connector with appropriate WebSocket API data

stream instrumentation in Linux screen virtual terminal on the test server. Three instances of

WebSocket connector, each connected to the particular exchange, were created in connector server

which was dedicated to the connector written in particular programming language. This was done

for all six connector servers at the same time.

 Cron daemon was configured on management server to execute the management script for each

test (connector – exchange) regularly every 10 seconds. Management script verified whether the test

is still running. When the script detected that the test is stopped for some reason (e.g. exchange closed

the connection) the script started the test again so that the connector continued receiving messages

from the exchange.

 At the end of the test cron daemon was stopped manually on management server to prevent re-

starting the tests again. The second – exit script – was executed from management server to stop all

running connectors correctly on WebSocket connector servers. Several SQLite databases containing

events received from exchanges and their appropriate timestamps indicating the time when they

were received by the connector were created as the raw data outcome of the performance test.

3. Results

In this section, we summarize the results obtained during performance testing of WebSocket

protocol implementation in chosen programming languages. We provide detailed description of data

transformation procedure and data sets cleaning which was required for accurate calculations.

Further we analyze the performance test results. The chapter ends with the comparison of WebSocket

protocol implementations within chosen programming languages and their absolute placement with

respect to each other.

3.1. Test Summary

 The performance of WebSocket protocol implementations in referential libraries of six

programming languages was tested experimentally from the cloud environment with the use of

WebSocket connectors. The connectors were receiving events from cryptocurrency exchanges for 100

hours. The WebSocket API data streams were instrumented to provide the maximum possible

workloads for WebSocket connectors. We obtained SQLite databases which contain raw exchange

events received by connectors and timestamps referring to the time when the events were received.

Based on these database records, we were able to calculate the latency of each event which was

parallelly pushed by the exchange to each subscribed connector. Subsequently, it was possible to

evaluate the difference between latencies for each WebSocket library/programming language. The

Computers 2020, 9, x FOR PEER REVIEW 12 of 25

results which are discussed further correlate with similar programming languages research which

used comparable performance testing methods.

After the test was completed, we verified the presence of data in each generated SQLite database.

We prepared introductory overview of how the test ran. Table 6 shows how many messages in total

were pushed from particular cryptocurrency exchange API to all WebSocket connectors and how

many messages in total were pushed by the particular API to all connectors per one minute and per

one second.

Table 6. Total count of messages and message throughput from cryptocurrency exchange

WebSocket APIs to all WebSocket connectors.

Cryptocurrency

Exchange

Messages

Count

Messages

per 1 min.

Messages

per 1 sec.

Binance 206.982.664 34.497 575

Bithumb 235.393.476 39.232 654

Gemini 92.833.799 15.472 258

Table 7 shows how many messages were approximately pushed from particular cryptocurrency

exchange API to one WebSocket connector and how many messages were approximately pushed by

the particular API to one connector per one minute and per one second.

Table 7. Total count of messages and message throughput from cryptocurrency exchange

WebSocket APIs to one WebSocket connector in average.

Cryptocurrency

Exchange

Messages

Count

Messages

per 1 min.

Messages

per 1 sec.

Binance 34.497.111 5.750 96

Bithumb 39.232.246 6.539 109

Gemini 15.472.300 2.579 43

In general, more than 0.5 billion messages were received from all exchange APIs by WebSocket

connectors in total what equals to 120GB in terms of saved file system data. The minimal size of the

event received by the connector during the test was 124B, while the maximal event size was 805kB.

3.2. Data Transformation

 Based on the asynchronous nature of the whole performance test, when particular tests were

started and re-started automatically by the shell management script from cron daemon, there was

suspicion that there are events which were not received by all connectors equally from the exchange.

This could happen when exchange’s WebSocket API terminated the connector connection. Therefore,

before we started with detailed analysis of performance of WebSocket protocol implementations in

various programming languages, we had to filter out such events.

In the first phase, we developed a PHP script which transformed data from SQLite databases

created during the test into one central MySQL database used for further data analysis. We have

chosen MariaDB (open source version of MySQL RDBMS) with TokuDB as a storage engine because

it is designed for high performance on write-intensive workloads which is achieved with Fractal Tree

indexing. Additionally, TokuDB supports up to 25x data compression, hot schema changes, hot index

creation and hot table columns modifications [57]. These features helped us to speed up database

schema development, database operations during data transformation, data analysis and physically

minimize the overall size of collected data.

Generic MySQL table structure for test data is shown in Figure 6. Eighteen tables were created

while each table stored data from the particular exchange (variable <exchange_id>) received by

WebSocket connector developed with specific programming language (variable

<websocket_connector_id>).

Computers 2020, 9, x FOR PEER REVIEW 13 of 25

-- MySQL dump 10.16 Distrib 10.1.44-MariaDB, for debian-linux-gnu (x86_64)

--

-- Host: localhost Database: wsc

-- --

-- Server version 10.1.44-MariaDB-0ubuntu0.18.04.1

--

-- Table structure for table `events_<exchange_id>_<websocket_connector_id>`

--

DROP TABLE IF EXISTS `events_<exchange_id>_<websocket_connector_id>`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `events_<exchange_id>_<websocket_connector_id>` (

`event_id` bigint(20) NOT NULL AUTO_INCREMENT,

`datetime_received` bigint(20) NOT NULL,

`event` mediumtext NOT NULL,

`event_hash` varchar(32) DEFAULT NULL,

`datetime_event` bigint(20) DEFAULT NULL,

`datetime_diff` int(11) DEFAULT NULL,

PRIMARY KEY (`event_id`),

UNIQUE KEY `ev_hash_uq_idx` (`event_hash`)

) ENGINE=TokuDB DEFAULT CHARSET=utf8mb4;

/*!40101 SET character_set_client = @saved_cs_client */;

Figure 6. Generic MySQL table structure for test data.

PHP script took each SQLite database as input, read specified number of rows in a while loop,

excluded those rows which did not contain string pattern that corresponded with expected event

type using regular expression. For each relevant row taken from SQLite database, the script parsed

the time when the event was sent by the exchange’s WebSocket API to the connector from the event

payload. Then the script calculated the time difference between parsed time and the time when the

connector received the event by subtracting these two values. Moreover, the script calculated MD5

hash for the event payload for the purpose of further data transformation. Such data prepared by the

script was inserted into MySQL database within a SQL transaction. This data cleaning procedure

helped us to filter out events which were not relevant for our test because they did not contain

timestamp value referring to time when the event was pushed from exchange’s WebSocket API to

WebSocket connector (e.g. open and close events). At the same time, we applied MD5 hash function

to each record in event table so that we could continue with data cleaning.

MD5 algorithm for creation of a hash string for event record was chosen because of its speed in

regard to the need to generate the hash for more than 0.5 billion events. MD5 outperforms other

hashing algorithms like SHA-1, SHA-256 or SHA-512 in terms of speed [58]. Despite it is generally

known that MD5 vulnerabilities were discovered, probability of producing collisions in which two

different messages have the same hash values is extremely low in reality. Collisions occur mainly as

a result of prepared attack [59].

 The second phase involved data cleaning based on prepared MD5 hashes. In the database, there

were events which were not received from particular exchange by all connectors equally during the

test. This happened when one connector connection was closed by the API. Shell management script

started the closed connection again within maximum of 10 seconds in such cases. During this small

downtime of one connector the other connectors were still receiving events and storing the

information when each event was received. These messages had to be cleared so that we could

compare the difference between the time when the event was sent byt the exchange’s WebSocket API

and the time when the event was received by the connector for those events which were received by

all six connectors only.

We created three new tables (binance_event_hash, bithumb_event_hash, gemini_event_hash) in

MySQL database using inner join SQL statement for all connectors (all programming languages) that

were connected to particular exchange. The statement is presented in Figure 7. Each of new tables

represented unique set of MD5 hashes referring to events that were relevant for data analysis.

CREATE TABLE <exchange_id>_event_hash AS

SELECT a.event_hash

FROM events_<exchange_id>_<websocket_connector_id1> a

INNER JOIN events_<exchange_id>_<websocket_connector_id2> b

ON b.event_hash = a.event_hash

INNER JOIN events_<exchange_id>_<websocket_connector_id3> c

ON c.event_hash = b.event_hash

Computers 2020, 9, x FOR PEER REVIEW 14 of 25

INNER JOIN events_<exchange_id>_<websocket_connector_id4> d

ON d.event_hash = c.event_hash

INNER JOIN events_<exchange_id>_<websocket_connector_id5> e

ON e.event_hash = d.event_hash

INNER JOIN events_<exchange_id>_<websocket_connector_id6> f

ON f.event_hash = e.event_hash;

ALTER TABLE <exchange_id>_event_hash

ADD CONSTRAINT <exchange_id>_hash_uq_idx

UNIQUE KEY (event_hash);

Figure 7. Generic MySQL table structure for storing relevant MD5 hashes for particular exchange.

Irrelevant events had to be cleared from data tables according to MD5 hashes stored in new

tables. SQL statements for the delete operation are presented in Figure 8.

DELETE FROM events_<exchange_id>_<websocket_connector_id>

WHERE event_hash NOT IN

(SELECT event_hash

FROM <exchange_id>_event_hash);

Figure 8. Generic SQL statement used to delete irrelevant events within data tables.

At the end of data transformation procedures, the events stored in MySQL data tables

events_<exchange_id>_<websocket_connector_id> were cleared from events irrelevant for data

evaluation.

3.3. Data Evaluation

 Having the data cleaned and prepared for the analysis we performed basic statistical tests to

discover its nature in terms of normality. We tested each numeric data set representing the difference

between the time when the event was sent byt the exchange’s WebSocket API and the time when the

event was received by the connector using Shapiro-Wilk, D-Agostino K2 and Anderson-Darling tests

to evaluate whether the data sets follow Gaussian-like or non-Gaussian distribution [60, 61]. Then

we could better decide what statistical and graphical methods to use so we were be able to provide

qualified explanation of test results. All three tests are implemented as statistical functions within

stats module in SciPy library for Python programming language thus they can be easily implemented

to check the nature of data distribution [62].

 Usually one normality test type provides correct result. Our data sets were unusually huge (tens

of millions of records) and while we created Shapiro-Wilk test we noticed that its algorithm

implementation in SciPy works correctly for data sets with number of items less than 5000 only.

Therefore, we decided to test our data sets with all three mostly used normality tests implemented in

SciPy. Using these tests for each of eighteen times difference data sets (column datetime_diff in

events_<exchange_id>_<websocket_connector_id> table) the result was the same – the data was non-

Gaussian nature. This finding indicated that data sets were skewed.

No single numeric measure is very useful for describing skewed distributions, what is usual for

symmetric distributions. We applied “the five-number summary” which consists of median (Q2), the

quartiles Q1 and Q3, and the smallest and largest individual observations – altogether minimum, Q1,

median, Q3 and maximum. This statistical method filters out the outliers, which are values falling at

least 1.5 x IQR above Q3 and below Q1. IQR is the distance between Q1 and Q3, mathematically it is

a subtraction of Q1 from Q3. Five-number summary is visually incorporated within the boxplot type

of graph which provides accurate insight into the data distribution. Because this type of graph is ideal

for comparisons of several sets of compatible skewed data [63-65], we used it for representation of

our performance test results.

 Numerical calculations for data sets were performed by utilizing boxplot_stats function in

simple algorithm we developed for this purpose. This function belongs to cbook module of matplotlib

library for Python programming language [66]. Important calculations for our data sets are shown in

Table 8 which represents five-number summary metrics for WebSocket event latencies within

Binance exchange, Table 9 within Bithumb exchange and Table 10 within Gemini exchange.

Computers 2020, 9, x FOR PEER REVIEW 15 of 25

Table 8. Five-number summary metrics for Binance WebSocket API event latencies.

 WebSocket Event Latency [ms] @ Binance Exchange

Metric C++ Go Java JavaScript PHP Python

Maximum 135 138 178 ↓ 135 134 ↑ 137

Q3 126 128 144 ↓ 125 ↑ 127 128

Median 121 ↑ 123 125 ↓ 121 ↑ 123 124

Q1 120 ↑ 121 120 ↑ 120 ↑ 122 ↓ 122 ↓

Minimum 112 ↑ 114 114 113 115 ↓ 114

 Symbol ↑ indicates the best and symbol ↓ indicates the worst value for a metric.

Table 9. Five-number summary metrics for Bithumb WebSocket API event latencies.

 WebSocket Event Latency [ms] @ Bithumb Exchange

Metric C++ Go Java JavaScript PHP Python

Maximum 100 ↑ 101 116 ↓ 102 102 101

Q3 90 ↑ 91 97 ↓ 90 ↑ 92 91

Median 86 ↑ 87 88 ↓ 86 ↑ 88 ↓ 86 ↑

Q1 83 84 84 82 ↑ 85 ↓ 84

Minimum 79 79 79 78 ↑ 80 ↓ 80 ↓

Symbol ↑ indicates the best and symbol ↓ indicates the worst value for a metric.

Table 10. Five-number summary metrics for Gemini WebSocket API event latencies.

 WebSocket Event Latency [ms] @ Gemini Exchange

Metric C++ Go Java JavaScript PHP Python

Maximum 146 ↑ 204 350 ↓ 244 164 248

Q3 90 ↑ 115 175 ↓ 131 101 133

Median 61 ↑ 67 73 ↓ 68 66 67

Q1 53 ↑ 56 57 ↓ 55 57 ↓ 55

Minimum 46 46 45 ↑ 47 ↓ 46 46

Symbol ↑ indicates the best and symbol ↓ indicates the worst value for a metric.

 We used seaborn for visual representation of five-number summary for each data set. Seaborn

is a Python data visualization library [67]. We again prepared a simple algorithm which took data

sets obtained by six WebSocket connectors within a particular exchange as the input and by utilizing

seaborn’s boxplot function it rendered appropriate boxplot graph. Figure 9 shows boxplots

generated for data sets which represent WebSocket event latencies belonging to programming

languages and their respective WebSocket libraries. Each graph represents six boxplots that are data

sets obtained by a connector within a particular exchange. Each boxplot represents approximately

15.5 to 34.5 of millions of events.

Y axis of each graph is dynamically adapted to the range between minimal and maximal value

across all boxplots located inside the graph. Differences between Y axis ranges in provided graphs

are logically caused by the nature of each particular exchange – its server implementation of

WebSocket protocol together with internal server workloads reflecting the 30-days trading volume

and number of traded pairs shown in Table 3. It is necessary to emphasize that this experiment is

looking for relative differences in measured values and its purpose is not to explain absolute values.

Comparison of WebSocket protocol event latency based on five-number summary with its visual

representation in boxplot graphs brought interesting insight in how the latency is distributed in data

sets with regards to a particular exchange. The first fact we have to mention is that there were several

unexpected outliers ranging from thousands to tens of thousands of milliseconds. These outliers were

present in data sets obtained within each exchange and each programming language. We did not

notice any unusual utilization of server performance metrics when we searched for the cause of their

occurrence. Also, the local time on all test servers was synchronized against the Internet time service.

Computers 2020, 9, x FOR PEER REVIEW 16 of 25

Therefore, we assume that either the exchange sent the old data to the connectors or the exchanges

faced significant momentary utilizations of their APIs what caused that events were occasionally sent

with an extreme delay. This characteristic may be a stimulus for specific further research.

Figure 9. Boxplot graphs representing five-number summary for event latency data sets belonging to

chosen programming languages and their respective libraries. Graphs represent event latencies in

relation to: (a) Binance exchange; (b) Bithumb exchange; (c) Gemini exchange.

Looking at all graphs present in Figure 9, the most distinct observation is, that Java together

with its implementation of WebSocket protocol in Java WebSockets library had the worst

performance. Not only its maximum value is much higher than maximum values of other languages,

but also IQR where 50% of all values from the data set fall, is approximately two times as long as the

IQR length within the rest of languages. Interesting fact is, that minimum and Q1 values do not

deviate much from values of other languages. This observation indicates that implementation of

WebSocket protocol in Java WebSockets library is probably not optimized for higher event workloads

with event throughput up to 109 events per second ranging between 124B and 805kB. On the other

side, there is C++ implementation with µWebSockets library which reached the best results for most

of five-number summary metrics. Especially, C++ reached the lowest median. It indicates that C++

was the fastest language in receiving the total 50% of events sent by all three exchanges. Based on the

data presented with Table 8-10 the other performant language is JavaScript with its ws library and

Node.js runtime. The latency of events was approximately equal to C++ within tests running with

Binance and Bithumb exchanges, while it showed slightly worse results with Gemini exchange.

Despite there are small recognizable differences in results for the remaining three languages and their

respective libraries – Go with Gorilla WebSocket, PHP with php-wss and Python with websockets –

it was difficult to evaluate it visually. Therefore, we employed very simple scoring model which

helped us to determine the exact order of programming languages and their libraries in terms of

WebSocket protocol performance.

We assigned a number to each value present in Table 8-10 representing how good or bad the

value is compared to other values within the same metric. The number assigned to each metric value

was ranging from 6 (the best – assigned to lowest metric value which represented lowest event

latency) to 1 (the worst – assigned to highest metric value which represented highest event latency).

In case there were two similar values for various programming languages within the same metric,

those two values were assigned the same score and the next value in sequence was assigned the score

subtracted by the number of times the previous value occurred. Generic formula used for calculation

of metric score per programming language:

=ROUND((SUM(<MetricIdValue@LangId@Binance>;

 <MetricIdValue@LangId@Bithumb>;

 <MetricIdValue@LangId@Gemini>)/3);2),

(1)

(a) (b) (c)

Computers 2020, 9, x FOR PEER REVIEW 17 of 25

 With this method we calculated the score for each metric type aggregated across all three

exchanges within a particular programming language. Score results are shown in Table 11 and their

visual representation is shown in Figure 10. The highest the score, the better the result.

Table 11. Comparison of metric scores within each programming language.

 Metric Score @ All Exchanges

Metric C++ Go Java JavaScript PHP Python

Maximum 5.67 3.67 1.00 3.67 4.67 3.33

Q3 5.67 3.67 1.00 5.00 3.67 3.00

Median 6.00 3.67 1.33 4.67 3.67 4.00

Q1 5.67 3.33 4.00 5.67 1.67 3.67

Minimum 5.33 4.67 5.00 4.00 2.67 3.67

 Having the scores of metrics in relation with each programming language, we could perform

second calculation to determine the final placement of each tested programming language. We

calculated a sum of scores per programming language from Table 11 and subtracted the sum with

the numer of metrics as shown in formula:

=ROUND((SUM(<MaximumMetricScore@LangId >;

 <Q3MetricScore@LangId >;

 <MedianMetricScore@LangId>,

 <Q1MetricScore@LangId>;

 <MinimumMetricScore@LangId>)/5);2)

(2)

Figure 10. Metric scores within each programming language.

 We calculated the final score for each programming language involved in performance test of

WebSocket protocol as shown in Table 12. The highest the score, the better the result. The final

placement of programming languages is shown in Figure 11.

Table 12. Final score of programming languages involved in WebSocket protocol performance test.

 C++ Go Java JavaScript PHP Python

Final Score 5.67 3.80 2.47 4.60 3.27 3.53

0

1

2

3

4

5

6

Maximum Q3 Median Q1 Minimum

Sc
o

re

Five-number Summary Metric

C++ Go Java JavaScript PHP Python

Computers 2020, 9, x FOR PEER REVIEW 18 of 25

Figure 11. Aggregated scores and final placement of programming languages.

4. Discussion

Building a profitable real-time cryptocurrency algorithmic trading system is a challenging task.

Professional traders are aware of the fact that being profitable not only comes with the sophisticated

trading strategy but a reliable trading system which is capable of immediate trade executions is

similarly important. Trading system is usually composed of several parts – exchange connector

responsible for exchange connection and handling of market data, signal generator responsible for

prediction analysis (technical, fundamental, combined etc.), risk allocator responsible for the

allocation of exact amount of capital to traded pair, executor responsible for buying or selling within

the particular exchange etc. All mentioned modules are usually driven by their own specific

algorithms and optimization processes. Most of serious and established cryptocurrency exchanges

enforce the communication with their APIs via WebSocket protocol due to its advantageous

attributes like connection persistency, latency reduction, optimization of CPU and bandwidth

utilization and simplicity. However, the implementation of WebSocket protocol on the client side,

while the protocol considered “the layer under” serves within important processes like subscription

to the exchange’s API and receiving of events, might be a possible bottleneck negatively affecting the

overall speed of the system. Therefore, we decided to experimentally test the performance of native

WebSocket protocol implementation in several widely used programming languages while we

intended to prove that the choice of suitable communication protocol implementation within a

programming language has significant impact on the whole performance of the trading system.

Moreover, we are convinced that building of such trading system must start with basic decisions

concerning communication with the exchange.

Findings from our performance test experiment proved that there are significant performance

differences in implementation of WebSocket protocol between various types of programming

languages and their respective libraries. Differences in implementation of WebSocket protocol within

Java frameworks (Netty, Undertow, Vert.x, Grizzly and Jetty) were also measured by Wang in

laboratory conditions [23]. Outcome of their research is usable for those who make development and

performance decisions with focus on Java programming language. In contrast with Wang our

research showed that Java WebSockets library which is the reference implementation of WebSocket

protocol in Java was the least performant implementation compared to other languages. Java,

considered as an intermediate programming language, uses some form of JIT compilation and

optimization processes while running the bytecode. Generally, it is also the first choice for

development of enterprise applications. Therefore, its worst performance was not expected to be the

one of the outputs of our research. This opens interesting new research question: How would Java

WebSockets library do in performance comparison with other Java libraries which implement

WebSocket protocol? We assume that Java WebSockets is probably not optimized for the size of

1st Place

3rd Place

6th Place

2nd Place

5th Place
4th Place

0

1

2

3

4

5

6

C++ Go Java JavaScript PHP Python

Sc
o

re

Programming Language

Computers 2020, 9, x FOR PEER REVIEW 19 of 25

workloads occurred within our performance test. Our research showed that Java WebSockets library

should not be considered for the development purposes of trading systems.

On contrary, we recommend using C++ for building trading system communication interface

with the exchange. While µWebSockets library was the most performant one in our use case we

deduce it would definitely be also suitable for other systems where performance is the top criterion.

The only fact which needs to be considered is the complexity and speed of the development process.

The same goes for the Go programming language and its Gorilla WebSocket library. These

conclusions well correspond with research focused on comparison of performance of compiled and

interpreted languages [13, 27].

JavaScript’s performance approached C++ which was measured the highest performance in our

test. Since Google developed V8 engine for Chrome browser which is also utilized by Node.js – an

asynchronous event-driven JavaScript runtime – its usage in building scalable network application

has grown enormously. JavaScript is nowadays the most used and loved programming language

according to GitHub [33]. While many cryptocurrency exchanges provide their API snippets and

describe the use of their APIs in JavaScript, we recommend it together with the Node.js runtime as

the ideal candidate for development of WebSocket API subscription and event handling module. We

also support this recommendation with the fact that there is a really strong community behind both

JavaScript and Node.js.

Comparing the final programming language/library score of 3.53 for Python and 3.27 for PHP,

it is obvious that they had approximately the same performance during the test. The score between 3

and 4 is not bad. These languages with their implementations and WebSocket libraries are offered as

an alternative decision for further development of trading system communication components.

Despite they have undoubtedly many advantages, e.g. speed of producing the source code which is

fat better compared to C++, we would not recommend them for high-performance tasks where high

speed and low latency are the main criteria referring to the setup used within our experiment.

Based on the announcement of PHP release managers, PHP version 8.0 will be officially released

on November 26, 2020 [68]. The most acclaimed future coming with this new version is completely

new JIT compiler which promises significantly better performance for numerical code and slightly

better performance for typical web application. The performance comparison of PHP 7.2 used within

the experiment and new PHP 8.0 in context of receiving events from cryptocurrency exchanges

utilizing WebSocket protocol may give interesting results. The PyPy implementation of Python which

already involves pure JIT techniques has been measured 4.4x faster compared to CPython [69], which

we used within our test. The inclusion of PyPy into next experiment would produce other valuable

results. We also propose to extend the WebSocket’s data stream subscription method with the

possibility of sending separate WebSocket JSON payload request what was not feasible with current

version of WebSocket connector which only supported the subsription method via WebSocket header

values provided in initial WebSocket handshake packet. This will allow many other cryptocurrency

exchanges to be involved in the test. The expansion of the tested sample of programming libraries is

also expected within future developments.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

This appendix summarizes requirements for the content and format of the academic article

created as a part of the master’s project in computing for the potential submission to the Computers

journal. Incorporation of these requirements into appendix is set out in the assessment grid for MSc

research paper. The Computers journal article template states that all appendix sections must be cited

in the main text. In this case, Appendix A is logically not connected with the research and therefore

it is not cited in the main text.

Computers 2020, 9, x FOR PEER REVIEW 20 of 25

Aims

Computers (ISSN 2073-431X) is an international, open access journal which provides an advanced

forum for computer sciences. It publishes reviews, regular research papers and short

communications. Our aim is to encourage scientists to publish their experimental and theoretical

results in as much detail as possible. There is no restriction on the length of the papers. The full

experimental details must be provided so that the results can be reproduced.

Subject Areas

• computer science & engineering

• computers and computation

• information systems

• software, graphics, programming

• computer software

• computer networking and Internet

• computer programming; programming languages

• communications and control

• etc.

Types of Publications

Computers has no restrictions on the length of manuscripts, provided that the text is concise and

comprehensive. Full experimental details must be provided so that the results can be reproduced.

Computers requires that authors publish all experimental controls and make full datasets available

where possible (see the guidelines on Supplementary Materials and references to unpublished data).

Articles: Original research manuscripts. The journal considers all original research manuscripts

provided that the work reports scientifically sound experiments and provides a substantial amount

of new information. Authors should not unnecessarily divide their work into several related

manuscripts, although Short Communications of preliminary, but significant, results will be

considered. Quality and impact of the study will be considered during peer review.

General Considerations

Research manuscripts should comprise:

• Front matter: Title, Author list, Affiliations, Abstract, Keywords

• Research manuscript sections: Introduction, Results, Discussion, Materials and Methods,

Conclusions (optional).

• Back matter: Supplementary Materials, Acknowledgments, Author Contributions, Conflicts

of Interest, References.

Abbreviations should be defined in parentheses the first time they appear in the abstract, main

text, and in figure or table captions and used consistently thereafter.

SI Units (International System of Units) should be used. Imperial, US customary and other units

should be converted to SI units whenever possible.

Equations: If you are using Word, please use either the Microsoft Equation Editor or the

MathType add-on. Equations should be editable by the editorial office and not appear in a picture

format.

Front Matter

These sections should appear in all manuscript types.

Title: The title of your manuscript should be concise, specific and relevant. It should identify if

the study reports (human or animal) trial data, or is a systematic review, meta-analysis or replication

study.

Computers 2020, 9, x FOR PEER REVIEW 21 of 25

Author List and Affiliations: Authors' full first and last names must be provided. The initials of

any middle names can be added. The PubMed/MEDLINE standard format is used for affiliations:

complete address information including city, zip code, state/province, and country. At least one

author should be designated as corresponding author, and his or her email address and other details

should be included at the end of the affiliation section. Please read the criteria to qualify for

authorship.

Abstract: The abstract should be a total of about 200 words maximum. The abstract should be a

single paragraph and should follow the style of structured abstracts, but without headings: 1)

Background: Place the question addressed in a broad context and highlight the purpose of the study;

2) Methods: Describe briefly the main methods or treatments applied. Include any relevant

preregistration numbers, and species and strains of any animals used. 3) Results: Summarize the

article's main findings; and 4) Conclusion: Indicate the main conclusions or interpretations. The

abstract should be an objective representation of the article: it must not contain results which are not

presented and substantiated in the main text and should not exaggerate the main conclusions.

Keywords: Three to ten pertinent keywords need to be added after the abstract. We recommend

that the keywords are specific to the article, yet reasonably common within the subject discipline.

Research Manuscript Sections

Introduction: The introduction should briefly place the study in a broad context and highlight

why it is important. It should define the purpose of the work and its significance, including specific

hypotheses being tested. The current state of the research field should be reviewed carefully and key

publications cited. Please highlight controversial and diverging hypotheses when necessary. Finally,

briefly mention the main aim of the work and highlight the main conclusions. Keep the introduction

comprehensible to scientists working outside the topic of the paper.

Materials and Methods: They should be described with sufficient detail to allow others to

replicate and build on published results. New methods and protocols should be described in detail

while well-established methods can be briefly described and appropriately cited. Give the name and

version of any software used and make clear whether computer code used is available. Include any

pre-registration codes.

Results: Provide a concise and precise description of the experimental results, their

interpretation as well as the experimental conclusions that can be drawn.

Discussion: Authors should discuss the results and how they can be interpreted in perspective

of previous studies and of the working hypotheses. The findings and their implications should be

discussed in the broadest context possible and limitations of the work highlighted. Future research

directions may also be mentioned. This section may be combined with Results.

Conclusions: This section is not mandatory, but can be added to the manuscript if the discussion

is unusually long or complex.

Back Matter

Conflicts of Interest: Authors must identify and declare any personal circumstances or interest

that may be perceived as inappropriately influencing the representation or interpretation of reported

research results. If there is no conflict of interest, please state "The authors declare no conflict of

interest." Any role of the funding sponsors in the design of the study; in the collection, analyses or

interpretation of data; in the writing of the manuscript, or in the decision to publish the results must

be declared in this section. If there is no role, please state “The founding sponsors had no role in the

design of the study; in the collection, analyses, or interpretation of data; in the writing of the

manuscript, and in the decision to publish the results”. For more details please see Conflict of Interest.

References: References must be numbered in order of appearance in the text (including table

captions and figure legends) and listed individually at the end of the manuscript. We recommend

preparing the references with a bibliography software package, such as EndNote, Reference

https://www.mdpi.com/journal/computers/instructions#conflict
http://endnote.com/
http://www.refman.com/

Computers 2020, 9, x FOR PEER REVIEW 22 of 25

Manager or Zotero to avoid typing mistakes and duplicated references. We encourage citations to

data, computer code and other citable research material. If available online, you may use reference

style 9. below.

Citations and References in Supplementary files are permitted provided that they also appear in

the main text and in the reference list.

In the text, reference numbers should be placed in square brackets [], and placed before the

punctuation; for example [1], [1–3] or [1,3]. For embedded citations in the text with pagination, use

both parentheses and brackets to indicate the reference number and page numbers; for example [5]

(p. 10). or [6] (pp. 101–105).

The reference list should include the full title, as recommended by the ACS style guide. Style

files for Endnote and Zotero are available.

References should be described as follows, depending on the type of work:

Journals or Articles:

1. Author 1, A.B.; Author 2, C.D. Title of the article. Abbreviated Journal Name Year, Volume, page range.

Books and Book Chapters:

2. Author 1, A.; Author 2, B. Book Title, 3rd ed.; Publisher: Publisher Location, Country, 2008; pp. 154–196.

3. Author 1, A.; Author 2, B. Title of the chapter. In Book Title, 2nd ed.; Editor 1, A., Editor 2, B., Eds.; Publisher:

Publisher Location, Country, 2007; Volume 3, pp. 154–196.

Unpublished work, submitted work, personal communication:

4. Author 1, A.B.; Author 2, C. Title of Unpublished Work. status (unpublished; manuscript in preparation).

5. Author 1, A.B.; Author 2, C. Title of Unpublished Work. Abbreviated Journal Name stage of publication

(under review; accepted; in press).

6. Author 1, A.B. (University, City, State, Country); Author 2, C. (Institute, City, State, Country). Personal

communication, 2012.

Conference Proceedings:

7. Author 1, A.B.; Author 2, C.D.; Author 3, E.F. Title of Presentation. In Title of the Collected Work (if

available), Proceedings of the Name of the Conference, Location of Conference, Country, Date of

Conference; Editor 1, Editor 2, Eds. (if available); Publisher: City, Country, Year (if available); Abstract

Number (optional), Pagination (optional).

Thesis:

8. Author 1, A.B. Title of Thesis. Level of Thesis, Degree-Granting University, Location of University, Date of

Completion.

Websites:

9. Title of Site. Available online: URL (accessed on Day Month Year).

References

1. Farell, R. An Analysis of the Cryptocurrency Industry. Wharton University of Pennsylvania, 2015.

[CrossRef]

2. Vo, A.; Yost-Bremm, C. A High-Frequency Algorithmic Trading Strategy for Cryptocurrency. J. of Comp.

Inf. Sys. 2018, pp.1-14. [CrossRef]

3. Păuna, C. Arbitrage Trading Systems for Cryptocurrencies. Design Principles and Server Architecture. Inf.

Econ. 2018, 22(2), pp.35-42. [CrossRef]

4. Liu, J.; Serletis, A. Volatility in the Cryptocurrency Market. O. Econ. Rev. 2019, 30(4), pp.779-811. [CrossRef]

5. Fang, F.; Ventre, C.; Basios, M.; Kong, H.; Kanthan, L.; Martines-Rego, D.; Wu, F.; Li, L. Cryptocurrency

Trading: A Comprehensive Survey. Elsevier under review. [CrossRef]

http://www.refman.com/
https://www.zotero.org/
http://endnote.com/downloads/style/mdpi
https://www.zotero.org/styles/?q=id%3Amultidisciplinary-digital-publishing-institute
https://repository.upenn.edu/wharton_research_scholars/130/
https://dx.doi.org/10.1080/08874417.2018.1552090
https://dx.doi.org/10.12948/issn14531305/22.2.2018.04
https://dx.doi.org/10.1007/s11079-019-09547-5
https://arxiv.org/pdf/2003.11352.pdf

Computers 2020, 9, x FOR PEER REVIEW 23 of 25

6. Treleaven, P.; Galas, M.; Lalchand, V. Algorithmic trading review. Comm. of the ACM 2013, 56(11), pp.76-

85. [CrossRef]

7. Mendes, A. Algorithmic and high-frequency trading strategies: A literature review. MAGKS J. Disc. Pap.

Ser. in Econ. 2016, 25-2016. [CrossRef]

8. Miller, R.; Shorter, G. High Frequency Trading: Overview of Recent Developments. Congressional

Research Service 2016, R44443. [CrossRef]

9. Hasbrouck, J.; Saar, G. Low-latency trading. J. of Fin. Mark. 2013, 16(4), pp.646-679. [CrossRef]

10. Prechelt, L. An empirical comparison of seven programming languages. Comp. 2000, 33(10), pp.23-29.

[CrossRef]

11. Nanz, S.; Furia, C.A. A Comparative Study of Programming Languages in Rosetta Code. In 2015 IEEE/ACM

37th IEEE International Conference on Software Engineering, Florence, Italy, 16-24 May 2015. [CrossRef]

12. Kochhar, P.; Wijedasa, D.; Lo, D. A Large Scale Study of Multiple Programming Languages and Code

Quality. In IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering

(SANER), Suita, Japan, 14-18 March 2016. [CrossRef]

13. Vergel Eleuterio, P.; Thukral, L. Programming Language Choices for Algo Traders: The Case of Pairs

Trading. Comp. Econ. 2018, 53(4), pp.1443-1449. [CrossRef]

14. Ma, K.; Sun, R. Introducing WebSocket-Based Real-Time Monitoring System for Remote Intelligent

Buildings. Int. J. of Distr. Sens. Net. 2013, 9(12). [CrossRef]

15. Puranik, D.; Feiock, D.; Hill, J. Real-Time Monitoring using AJAX and WebSockets. In 2013 20th IEEE

International Conference and Workshops on Engineering of Computer Based Systems (ECBS), Scottsdale,

AZ, USA, 22-24 April 2013. [CrossRef]

16. Skvorc, D.; Horvat, M.; Srbljic, S. Performance evaluation of Websocket protocol for implementation of full-

duplex web streams. In 2014 37th International Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 26-30 May 2014. [CrossRef]

17. Ma, K.; Zhang, W. Introducing browser-based high-frequency cloud monitoring system using WebSocket

proxy. Int. J. of Grid and Util. Comp. 2015, 6(1), pp.21-29. [CrossRef]

18. Babovic, Z.; Protic, J.; Milutinovic, V. Web Performance Evaluation for Internet of Things Applications.

IEEE Access 2016, 4, pp.6974-6992. [CrossRef]

19. Guyang, W.; Shulin, Y.; Xuelei, R.; Bin, W. Research on WebSocket-Based Authentication System. In

Proceedings of the 2017 VI International Conference on Network, Communication and Computing (ICNCC

2017), Kunming, China, 8-10 December 2017; pp.102-105. [CrossRef]

20. Shen, K.; Si, Z.; Zhang, L. Research and Implement of HTML5 Game Based on WebSocket. Lect. Not. in El.

Eng. 2017, pp.423-428. [CrossRef]

21. Rahmatulloh, A.; Darmawan, I.; Gunawan, R. Performance Analysis of Data Transmission on WebSocket

for Real-time Communication. In 2019 16th International Conference on Quality in Research (QIR):

International Symposium on Electrical and Computer Engineering, Padang, Indonesia, 22-24 July 2019.

[CrossRef]

22. Imre, G.; Mezei, G. Introduction to a WebSocket benchmarking infrastructure. In 2016 Zooming Innovation

in Consumer Electronics International Conference (ZINC), Novi Sad, Serbia, 1-2 June 2016. [CrossRef]

23. Wang, Y.; Huang, L.; Liu, X.; Sun, T.; Lei, K. Performance Comparison and Evaluation of WebSocket

Frameworks: Netty, Undertow, Vert.x, Grizzly and Jetty. In 2018 1st IEEE International Conference on Hot

Information-Centric Networking (HotICN), Shenzhen, China, 15-17 August 2018. [CrossRef]

24. Goldstein, M.; Kumar, P.; Graves, F. Computerized and High-Frequency Trading. Fin. Rev. 2014, 49(2),

pp.177-202. [CrossRef]

25. Popławski, P. Connectivity Solutions in Automated Trading. Int. J. of Elect. and Telecom. 2015, 61(4), pp.403-

408. [CrossRef]

26. Huang, B.; Huan, Y.; Xu, L.; Zheng, L.; Zou, Z. Automated trading systems statistical and machine learning

methods and hardware implementation: a survey. Ent. Inf. Sys. 2018, 13(1), pp.132-144. [CrossRef]

27. Borağan Aruoba, S.; Fernández-Villaverde, J. A comparison of programming languages in

macroeconomics. J. of Econ. Dyna. and Cont. 2015, 58, pp.265-273. [CrossRef]

28. The WebSocket Protocol. Available online: https://tools.ietf.org/html/rfc6455 (accessed on 17 March 2020).

29. NTP Pool Project. Available online: https://www.ntppool.org/en/ (accessed on 10 April 2020).

30. SQLite. Available online: https://www.sqlite.org (accessed on 10 April 2020).

https://dx.doi.org/10.1145/2500117
https://www.econstor.eu/bitstream/10419/144690/1/860290824.pdf
https://fas.org/sgp/crs/misc/R44443.pdf
https://www.sciencedirect.com/science/article/abs/pii/S1386418113000165
https://ieeexplore.ieee.org/document/876288
https://dx.doi.org/10.1109/ICSE.2015.90
https://dx.doi.org/10.1109/SANER.2016.112
https://dx.doi.org/10.1007/s10614-018-9813-x
https://dx.doi.org/10.1155/2013/867693
https://ieeexplore.ieee.org/document/6601579
https://dx.doi.org/10.1109/MIPRO.2014.6859715
https://www.inderscience.com/info/inarticle.php?artid=66389
https://dx.doi.org/10.1109/ACCESS.2016.2615181
https://dx.doi.org/10.1145/3171592.3171608
https://dx.doi.org/10.1007/978-981-10-3530-2_53
https://dx.doi.org/10.1109/QIR.2019.8898135
https://dx.doi.org/10.1109/ZINC.2016.7513661
https://dx.doi.org/10.1109/HOTICN.2018.8605989
https://dx.doi.org/10.1111/fire.12031
https://dx.doi.org/10.2478/eletel-2015-0053
https://dx.doi.org/10.1080/17517575.2018.1493145
https://dx.doi.org/10.1016/j.jedc.2015.05.009
https://tools.ietf.org/html/rfc6455
https://www.ntppool.org/en/
https://www.sqlite.org/

Computers 2020, 9, x FOR PEER REVIEW 24 of 25

31. Umre, J.; Batra; K.; Vaidya, V. Comparative Performance Analysis of Mysql and Sqlite Relational Database

Management Systems in Windows10 Environment. Int. J. of Lat. Tr. in Eng. and Tech. 2017, 8(1), pp.342-349.

[CrossRef]

32. GNU Screen. Available online: https://www.gnu.org/software/screen/ (accessed on 27 August 2020).

33. The RedMonk Programming Language Rankings: January 2020. Available online:

https://redmonk.com/sogrady/2020/02/28/language-rankings-1-20 (accessed on 12 April 2020).

34. Ray, B.; Posnett, D.; Devanbu, P.; Filkov, V. A large-scale study of programming languages and code quality

in GitHub. Comm. of the ACM 2017, 60(10), pp.91-100. [CrossRef]

35. Amaral, V.; Norberto, B.; Goulão, M.; Aldinucci, M.; Benkner, S.; Bracciali, A.; Carreira, P.; Celms, E.;

Correia, L.; Grelck, C.; Karatza, H.; Kessler, C.; Kilpatrick, P.; Martiniano, H.; Mavridis, I.; Pllana, S.;

Respício, A.; Simão, J.; Veiga, L.; Visa, A. Programming languages for data-Intensive HPC applications: A

systematic mapping study. Par. Comp. 2020, 91, 102584. [CrossRef]

36. µWebSockets. Available online: https://github.com/uNetworking/uWebSockets (accessed on 11 July 2020).

37. Gorilla WebSocket. Available online: https://github.com/gorilla/websocket (accessed on 11 July 2020).

38. Java WebSockets. Available online: https://github.com/TooTallNate/Java-WebSocket (accessed on 11 July

2020).

39. Ws: a Node.js WebSocket library. Available online: https://github.com/websockets/ws (accessed on 11 July

2020).

40. Php-wss. Available online: https://github.com/arthurkushman/php-wss (accessed on 11 July 2020).

41. Python websockets. Available online: https://github.com/aaugustin/websockets (accessed on 11 July 2020).

42. Magic Quadrant for Cloud Infrastructure as a Service, Worldwide. Available online:

https://www.gartner.com/doc/reprints?id=1-1CMAPXNO&ct=190709&st=sb (accessed on 13 April 2020).

43. Coinbase Case Study. Available online: https://aws.amazon.com/solutions/case-studies/coinbase

(accessed on 13 April 2020).

44. Regions, Availability Zones, and Local Zones. Available online:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html (accessed

on 13 April 2020).

45. Ben-David, Y.; Hasan, S.; Pearce, P. Location Matters: Limitations of Global-Scale Datacenters. Berkeley:

The Department of Electrical Engineering & Computer Sciences, University of California, 2011. [CrossRef]

46. Garvey, R.; Wu, F. Speed, distance, and electronic trading: New evidence on why location matters. J. of Fin.

Mark. 2010, 13(4), pp.367-396. [CrossRef]

47. Adrian, J. Informational Inequality: How High Frequency Traders Use Premier Access to Information to

Prey on Institutional Investors. Duke Law School, Duke University, 2015. [CrossRef]

48. Top Cryptocurrency Spot Exchanges. Available online: https://coinmarketcap.com/rankings/exchanges/

(accessed on 15 April 2020).

49. Cryptocurrency Exchange Industry Research Report. Available online:

https://tokeninsight.com/api/upload/levelPdf/34f311be77328eaf6caaff890a97daf6.pdf (accessed on 14

April 2020).

50. Crypto Exchange Volume Ranking. Available online: https://www.worldcoinindex.com/exchange

(accessed on 15 April 2020).

51. Investigation into the Legitimacy of Reported Cryptocurrency Exchange Volume. Available online:

https://ftx.com/volume-report-paper.pdf (accessed on 14 April 2020).

52. Web Sockets Streams for Binance. Available online: https://github.com/binance-exchange/binance-official-

api-docs/blob/master/web-socket-streams.md (accessed on 7 July 2020).

53. Bithumb WebSocket Document. Available online: https://github.com/bithumb-pro/bithumb.pro-official-

api-docs/blob/master/ws-api.md (accessed on 7 July 2020).

54. Gemini WebSocket API Reference. Available online: https://docs.gemini.com/websocket-api/ (accessed on

7 July 2020).

55. Performance Testing Guidance for Web Applications. Available online:

https://pdfs.semanticscholar.org/a2ff/c8cca5b3aa3302dcb3a05517e8c763314a1f.pdf?_ga=2.10551412.196933

797.1585508934-1365939409.1585508934 (accessed on 19 April 2020).

56. Jain, R. Introduction to Experimental Design. In The Art of Computer Systems Performance Analysis: Techniques

for Experimental Design, Measurement, Simulation and Modeling. John Wiley & Sons: New York, USA, 1991.

https://dx.doi.org/10.21172/1.81.044
https://www.gnu.org/software/screen/
https://redmonk.com/sogrady/2020/02/28/language-rankings-1-20
https://dx.doi.org/10.1145/3126905
https://dx.doi.org/10.1016/j.parco.2019.102584
https://github.com/uNetworking/uWebSockets
https://github.com/gorilla/websocket
https://github.com/TooTallNate/Java-WebSocket
https://github.com/websockets/ws
https://github.com/arthurkushman/php-wss
https://github.com/aaugustin/websockets
https://www.gartner.com/doc/reprints?id=1-1CMAPXNO&ct=190709&st=sb
https://aws.amazon.com/solutions/case-studies/coinbase
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://pdfs.semanticscholar.org/5c9c/8891b00bf09b17fc941c9c36c9b9d2daaa4a.pdf?_ga=2.192661481.2121009957.1597787378-535718111.1597500738
https://dx.doi.org/10.1016/j.finmar.2010.07.001
https://scholarship.law.duke.edu/cgi/viewcontent.cgi?article=1291&context=dltr
https://coinmarketcap.com/rankings/exchanges/
https://tokeninsight.com/api/upload/levelPdf/34f311be77328eaf6caaff890a97daf6.pdf
https://www.worldcoinindex.com/exchange
https://ftx.com/volume-report-paper.pdf
https://github.com/binance-exchange/binance-official-api-docs/blob/master/web-socket-streams.md
https://github.com/binance-exchange/binance-official-api-docs/blob/master/web-socket-streams.md
https://github.com/bithumb-pro/bithumb.pro-official-api-docs/blob/master/ws-api.md
https://github.com/bithumb-pro/bithumb.pro-official-api-docs/blob/master/ws-api.md
https://docs.gemini.com/websocket-api/
https://pdfs.semanticscholar.org/a2ff/c8cca5b3aa3302dcb3a05517e8c763314a1f.pdf?_ga=2.10551412.196933797.1585508934-1365939409.1585508934
https://pdfs.semanticscholar.org/a2ff/c8cca5b3aa3302dcb3a05517e8c763314a1f.pdf?_ga=2.10551412.196933797.1585508934-1365939409.1585508934

Computers 2020, 9, x FOR PEER REVIEW 25 of 25

57. TokuDB Introduction. Available online: https://www.percona.com/doc/percona-

server/LATEST/tokudb/tokudb_intro.html (accessed on 5 August 2020).

58. Long, S. A Comparative Analysis of the Application of Hashing Encryption Algorithms for MD5, SHA-1,

and SHA-512. In 3rd International Conference on Electrical, Mechanical and Computer Engineering,

Guizhou, China, 9-11 August 2019. [CrossRef]

59. Rasjid, Z.E.; Soewito, B; Witjaksono, G; Abdurachman, E. A Review of Collisions in Cryptographic Hash

Function Used in Digital Forensic Tools. In 2nd International Conference on Computer Science and

Computational Intelligence 2017, Bali, Indonesia, 13-14 October 2017. [CrossRef]

60. Univariate Analysis and Normality Test Using SAS, STATA, and SPSS. Available online: http://cef-

cfr.ca/uploads/Reference/sasNORMALITY.pdf (accessed on 7 August 2020).

61. Razali, N.M.; Wah, Y.B. Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and

Anderson-Darling Tests. Malaysia Institute of Statistics, Faculty of Computer and Mathematical Sciences,

Universiti Teknologi MARA (UiTM), 2010. [CrossRef]

62. Statistical functions (scipy.stats). Available online: https://docs.scipy.org/doc/scipy/reference/stats.html

(accessed on 7 August 2020).

63. Han, J.; Kamber, M.; Pei, J. Getting to Know Your Data. In Data Mining: Concepts and Techniques, 3rd ed.;

Morgan Kaufmann Publishers: Burlington, Massachusetts, USA, 2012; pp.39-82. [CrossRef]

64. Visualizing Samples with Box Plots. Available online: https://www.nature.com/articles/nmeth.2813.pdf

(accessed on 8 August 2020).

65. A Gentle Introduction to Data Visualization Methods in Python. Available online:

https://machinelearningmastery.com/data-visualization-methods-in-python/ (accessed on 8 August 2020).

66. Matplotlib.cbook. Available online:

https://matplotlib.org/3.1.1/api/cbook_api.html#matplotlib.cbook.boxplot_stats (accessed on 8 August

2020).

67. Seaborn.boxplot. Available online: https://seaborn.pydata.org/generated/seaborn.boxplot.html (accessed

on 8 August 2020).

68. PHP 8.0 Preparation Tasks. Available online: https://wiki.php.net/todo/php80 (accessed on 17 August

2020).

69. PyPy. Available online: https://www.pypy.org/ (accessed on 17 August 2020).

© 2020 by the authors. Submitted for possible open access publication under the terms

and conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

https://www.percona.com/doc/percona-server/LATEST/tokudb/tokudb_intro.html
https://www.percona.com/doc/percona-server/LATEST/tokudb/tokudb_intro.html
https://dx.doi.org/10.1088/1742-6596/1314/1/012210
https://dx.doi.org/10.1016/j.procs.2017.10.072
http://cef-cfr.ca/uploads/Reference/sasNORMALITY.pdf
http://cef-cfr.ca/uploads/Reference/sasNORMALITY.pdf
http://www.de.ufpb.br/~ulisses/disciplinas/normality_tests_comparison.pdf
https://docs.scipy.org/doc/scipy/reference/stats.html
https://dx.doi.org/10.1016/B978-0-12-381479-1.00002-2
https://www.nature.com/articles/nmeth.2813.pdf
https://machinelearningmastery.com/data-visualization-methods-in-python/
https://matplotlib.org/3.1.1/api/cbook_api.html#matplotlib.cbook.boxplot_stats
https://seaborn.pydata.org/generated/seaborn.boxplot.html
https://wiki.php.net/todo/php80
https://www.pypy.org/

